Numerical Techniques for Correction of Biases In Greenhouse Gas Fluxes Determined Using Non-Steady State Chamber Methods

-USDA-NIFA Air Quality Program
-ARS GRACEnet Project

ASA-CSSA-SSSA Annual Meeting 18 October 2011, San Antonio

Non-steady state (NSS) Chamber Methods

Most commonly used method for measuring soil-to-atmosphere fluxes of GHGs (e.g. N₂O).

<u>Open-bottomed chamber placed on soil surface</u>, followed by sampling of chamber headspace at discrete time intervals; flux is determined from rate of increase in gas concentration.

Many advantages: Inexpensive, easy to implement, well-suited to replicated plot studies comparing treatment effects.

<u>Important limitation</u>: Chamber placement alters the flux, by disrupting the concentration gradient.

The "Chamber Effect"

- Accumulation of gas suppresses diffusion, leads to non-linearity in chamber data (slope decreases with time)
- Flux at time zero will be underestimated using Linear Regression (LR)
- Non-linear models have been developed to overcome this problem

Livingston et al. (2006)

- Even the HM and Quadratic Regression models can substantially underestimate the pre-deployment flux.
- The extent of underestimation will increase with:
 - 1. Smaller chamber volume to area ratio (i.e., shorter chamber height)
 - 2. Longer chamber deployment times
 - 3. Greater soil air-filled porosity

Increased non-linearity in chamber data

Increased negative bias of the flux estimate

Errors of up to 40%

Failure of HM and Quadratic models

1. Quadratic regression: Fully empirical polynomial fit to data

C(t) =
$$at^2 + bt + c$$

Flux₀ = H b, where H is height of chamber

2. HM model: Theoretical basis, but very simplified

Governing equation is simple ODE:
$$\frac{dC}{dt} = k(C_d - C)$$
, where $k = \frac{D_s}{Hd}$

Simplifying assumptions:

$$Flux_0 = HD_s \frac{(C_d - C_0)}{d}$$

- -Constant soil-gas concentration (C_d) is maintained at some depth d
- -No gas is produced in soil above the depth d
- -Flux is described by steady-state diffusion (linear concentration profiles)

Does not rigorously describe soil-gas diffusion

Livingston et al. (2006)

3. Non-steady-state Diffusive Flux Estimator (NDFE) Model: More rigorous theoretical basis

$$S\frac{\partial C}{\partial t} = D_s \frac{\partial^2 C}{\partial z^2} + P(z)$$

More realistic governing equation (PDE):

Accounts for:

- -Transient change in soil-gas storage (1st term)
- -Non-steady state gas diffusion in the soil profile (2nd term)
- -Arbitrary vertical distribution of the source term for N₂O production (3rd term)

Derived analytical solution for the PDE with BC accounting for accumulation of gas within a chamber of height H:

$$C_{t} = C_{0} + Flux_{0} \frac{\tau}{H} \left[\frac{2}{\sqrt{\pi}} \sqrt{t/\tau} + \exp(t/\tau) \operatorname{erfc}(\sqrt{t/\tau}) - 1 \right]$$

The NDFE flux-calculation model Livingston et al. (2006)

Implicit solution for Flux₀

$$C_{t} = C_{0} + Flux_{0} \frac{\tau}{H} \left[\frac{2}{\sqrt{\pi}} \sqrt{t/\tau} + \exp(t/\tau) erfc(\sqrt{t/\tau}) - 1 \right]$$

- -Developed non-linear regression code to solve for Flux_o
- -Practical limitations: converges to multiple solutions, requires at least 4 and preferably 5 time points, not easily adapted to spreadsheet calculations.
- -Not widely used.

However:

- 1. Underlying theory is robust
- 2. Analytical solution can be useful in other ways

$$C_{t} = C_{0} + Flux_{0} \frac{\tau}{H} \left[\frac{2}{\sqrt{\pi}} \sqrt{t/\tau} + \exp(t/\tau) erfc(\sqrt{t/\tau}) - 1 \right]$$

1. Allows for error analysis

$$C_{t} = C_{0} + Flux_{0} \frac{\tau}{H} \left[\frac{2}{\sqrt{\pi}} \sqrt{t/\tau} + \exp(t/\tau) \operatorname{erfc}(\sqrt{t/\tau}) - 1 \right]$$

2. When the bias is expressed relative to the actual $Flux_0$:

$$\% \ flux \ underestimation = 100*\frac{(Flux_0 - Estimated \ flux)}{Flux_0}$$

it is independent of the flux magnitude or source vertical distribution, so results can be more broadly generalized

$$C_{t} = C_{0} + Flux_{0} \frac{\tau}{H} \left[\frac{2}{\sqrt{\pi}} \sqrt{t} (\tau) + \exp(t (\tau) erfc(\sqrt{t} (\tau)) - 1) \right]$$

3. Tau term has physical meaning

$$\tau = \frac{H^2}{S D_s}$$

H = chamber height (volume to area ratio)

S = Soil-gas storage term

 D_s = Soil diffusion coefficient

S and D_s can be further defined as functions of: bulk density, porosity, water content, Henry's law constant, and temperature - all of which can be measured or estimated

$$C_{t} = C_{0} + Flux_{0} \frac{\sigma}{H} \left[\frac{2}{\sqrt{\pi}} \sqrt{t} (\tau) + \exp(t / \tau) erfc(\sqrt{t} (\tau)) - 1 \right]$$

4. Bias for a given flux-calculation model can be expressed as empirical functions of τ and the chamber deployment time (DT):

Chamber height Deployment time Soil properties Flux calculation method

Using hypothetical values

Flux-Estimation Error Analysis

Range of variation in flux-measurement bias:

Used in initial stages of designing chamber protocols.

Variable (5 – 30 cm)

Deployment time

= 40 min

Soil properties

Bulk density = 1.1 g cm⁻³ Water content = 0.15 g g⁻¹ Flux calculation method

Compare LR, Quadratic, HM

Flux-Estimation Error Analysis

Approx. ½ of bias removed with NL models

HM and Quad agree well

Venterea et al. (2009)

Variable (5 – 30 cm)

Deployment time Compare 20, 40, 60 min

Soil properties

Bulk density = 1.1 g cm⁻³ Water content = 0.15 g g^{-1} Flux calculation method Quadratic

Flux-Estimation Error Analysis

Variable (5 – 30 cm)

Deployment time

Soil properties

Bulk density = 1.1 g cm⁻³

Compare water contents of 0.05, 0.10, and 0.30 g $\rm g^{-1}$

Flux calculation method **Quadratic**

Flux-Estimation Error Analysis

Soil Property Effects on Chamber Dynamics

- Not widely recognized, theory says can be very important
- Modeling: Soil w/ greater ε appears to have lower flux when Flux_o is the same
- After placement, more gas accumulates within soil as opposed to chamber

Protocol Design Guidance

Chamber height

15 cm

Soil properties

Use minimum expected values of bulk density and water content, e.g.:

1.0 g cm⁻³ 0.10 g g⁻¹

Flux calculation method

Quadratic

Flux-Estimation Error Analysis

Maximum Allowable Deployment time to achieve a given level of bias.

Will set upper limit on bias for the expected "worst-case" soil condition.

Protocol Design Guidance

Chamber height

15 cm

Soil properties

Use minimum expected values of bulk density and water content, e.g.:

1.0 g cm⁻³

Flux calculation method

Quadratic

Flux-Estimation Error Analysis

0.10 g g⁻¹

Protocol Design Guidance

Theoretically-based criteria for establishing protocols that can:

Decrease absolute biases and artifacts arising from differences in soil properties

Problem: Optimum protocols cannot always be used

Larger Chamber Heights and Shorter Chamber Deployment Times can be problematic:

- 1. Increased variance due to measurement error
- 2. Lower sensitivity to detecting fluxes (T. Parkin)
- 3. Logistical considerations
 e.g. rotational sampling regimes with large numbers of chamber locations don't allow use of short deployment times

Solutions?

Post-Hoc Bias Correction

Chamber height (e.g. 11 cm)

Deployment time (e.g. 60 min)

Using actual values

Soil properties

Measured at each fluxmeasurement event

- Bulk density
- Water content
- Temperature

Flux calculation method

(e.g. Quadratic model)

Flux-Estimation Error Analysis

Bias value specific to each flux-measurement event

Measured

Flux

Bias-corrected Flux

Post-Hoc Bias Correction

Practical Limitations

- 1. <u>Physical Soil Property Measurements</u> required; WFPS & soil temp commonly measured, provide most requirements. Also introduce additional sources of error; more work required to evaluate sensitivity of method to these error sources.
- 2. <u>Difficult to validate method</u>, true Flux₀ cannot be known under field conditions; laboratory methods might be useful but difficult to simulate field conditions.

Empirical Evaluation

- Reasonable agreement between bias-corrected flux estimates using:
- -Different DTs (30, 45, 60 min)
- -Different flux-calculation methods (LR and Quad)
- Some degree of validation, more work needed.

NDFE model also has simplifying assumptions:

$$S \frac{\partial C}{\partial t} = O_s \frac{\partial^2 C}{\partial z^2} + P(z)$$

1. Soil is vertically uniform (S and D_s are constants)

NDFE model also has simplifying assumptions:

$$S \frac{\partial C}{\partial t} = D_s \frac{\partial^2 C}{\partial z^2} + P(z)$$

- 1. Soil is vertically uniform (S and D_s are constants)
- 2. Transport is limited to 1 D diffusion

NDFE model also has simplifying assumptions:

$$S \frac{\partial C}{\partial t} = D_s \frac{\partial^2 C}{\partial z^2} + P(z)$$

- 1. Soil is vertically uniform (S and D_s are constants)
- 2. Transport is limited to 1 D diffusion
- 3. So sink term for N₂O consumption

Numerical solutions with non-uniform soil, with lateral diffusion, and sink term allowed:

$$S(z)\frac{\partial C}{\partial t} = \frac{\partial}{\partial z} \left(D_s \frac{\partial C}{\partial z} \right) + \frac{\partial}{\partial y} \left(D_s \frac{\partial C}{\partial y} \right) + P(z) + S(z)$$

Analytical solution reasonably accurate:

- 1. When soil physical properties averaged over the upper 10 cm of soil are used as model inputs (Venterea and Parkin, 2010)
- 2. Except in highly porous soils ($\epsilon > 0.4$) and with shallow chamber insertion depths (< 2 cm) (unpublished analysis)
- 3. Except when N_2O consumption >> N_2O production (Venterea and Stanenas, 2007)

Cross-Study Error Analysis

- Wide range of measurement conditions, soil properties, and flux-calculation methods leads to a wide range in flux biases across studies.
- Raises questions about validity of cross-site comparisons, large-scale emissions estimates and model validation studies; Calls for methods improvements and more uniformity.

Concluding Remarks

- Bias problems would be largely solved if chamber Deployment Times could be reduced to < 5 or 10 minutes.
- Need high-precision analytical instruments capable of detecting fluxes with short DTs and with minimal measurement error (CV of 1% or less) at ambient concentrations.
- Until these instruments are widely available, methods described here could be useful for decreasing chamber-induced biases.

